Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jan W. Bats, ${ }^{\text {a }}{ }^{*}$ Jan P. Weyrauch ${ }^{\text {a }}$ and A. Stephen K. Hashmi ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Organische Chemie, Universität Frankfurt, Marie-Curie-Strasse 11, D-60439 Frankfurt am Main, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Correspondence e-mail:
bats@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=145 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.067$
$w R$ factor $=0.117$
Data-to-parameter ratio $=20.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Methyl-N-(prop-2-ynyl)-N-(1H-pyrrol-2-ylmethyl)benzenesulfonamide

The crystal packing in the title compound, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, consists of an $\mathrm{N}-\mathrm{H} \cdots \pi_{\text {pyrrole }}$, a $\mathrm{C}-\mathrm{H} \cdots \pi_{\text {pyrrole }}$, a $\mathrm{C}-$ $\mathrm{H} \cdots \pi_{\text {phenyl }}$ and two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

The title compound, (I), was prepared in an effort to extend the gold-catalysed synthesis of highly substituted phenols with well defined substitution patterns, from furans as starting materials to the corresponding pyrroles which should provide anilines (for background information, see Hashmi et al., 2000). The title molecule (Fig. 1) has two intramolecular contacts which approach the van der Waals contact distance: $\mathrm{H} 5 A \cdots \mathrm{O} 12.43 \AA$ and $\mathrm{H} 6 B \cdots \mathrm{O} 2.44 \AA$. The pyrrole group is planar within experimental uncertainty. The phenyl group shows a small deviation from planarity: atoms S and C15 deviate by 0.061 (3) and 0.081 (4) \AA, respectively, in the same direction from the phenyl plane. These deviations from planarity may result from crystal-packing effects.

(I)

The crystal packing shows five intermolecular interactions [Fig. 2 and Table 1: Cg (pyrrole) is the centroid of the pyrrole ring and Cg (phenyl) is the centroid of the phenyl ring]. The alkyne group acts as a donor of a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with a rather short $\mathrm{H} \cdots \mathrm{O}$ distance of $2.37 \AA$. The $\mathrm{C} 1-\mathrm{H} 1$ bond also is involved in a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction, but with an $\mathrm{H} \cdots \mathrm{O}$ distance of $2.45 \AA$. The pyrrole groups form a herringbone pattern in the \mathbf{b} direction. Neighboring pyrrole groups are connected by $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions. The $\mathrm{N}-\mathrm{H}$ donors do not point to the centroid of the acceptor pyrrole ring, but point closely to atom C2 of the acceptor ring. The intermolecular $\mathrm{H} 01 \cdots \mathrm{C} 2$ distance of $2.44 \AA$ is rather short. $\mathrm{N}-\mathrm{H} \cdots \pi_{\text {pyrrole }}$ interactions have also been reported by Bennis \& Gallagher (1998) and Gallagher \& Moriarty (1999). The crystal structure of pyrrole (Goddard et al., 1997) shows a herring-bone pattern of pyrrole groups connected by $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions, similar to the structure of (I). The angle between neighboring pyrrole groups is 70.1° in the crystal structure of pyrrole, while a

Received 25 January 2002 Accepted 6 February 2002 Online 22 February 2002
\qquad

Figure 1
The structure of (I) with 50% probability displacement ellipsoids.
similar value of $69.4(1)^{\circ}$ is observed in (I). Intermolecular $\mathrm{C} 5-\mathrm{H} 5 A \cdots \pi_{\text {pyrrole }}$ interactions further stabilize the crystal structure. The $\mathrm{C} 5-\mathrm{H} 5 A$ bond points closer to the $\mathrm{C} 2-\mathrm{C} 3$ bond than to the centroid of the acceptor pyrrole group. Intermolecular $\mathrm{C} 15-\mathrm{H} 15 C \cdots \pi_{\text {phenyl }}$ interactions connect neighboring tosylate groups in the a direction.

Experimental

Propargylamine $(2.20 \mathrm{ml}, 32.1 \mathrm{mmol})$ was added to a solution of pyrrole-2-carboxaldehyde ($3.07 \mathrm{~g}, 32.3 \mathrm{mmol}$) in dichloromethane containing $\mathrm{MgSO}_{4}(10 \mathrm{~g}, 83 \mathrm{mmol})$. The reaction mixture was stirred for 20 h at ambient temperature, then the solvent was removed in vacuo to afford (prop-2-ynyl)(1 H -pyrrol-2-ylmethylene)amine $(4.17 \mathrm{~g}, 31.6 \mathrm{mmol})$ in 98% yield. This crude product was dissolved in dry methanol, sodium borohydride ($1.43 \mathrm{~g}, 37.9 \mathrm{mmol}$) was added at 288 K and the reaction mixture was stirred for 1.5 h at room temperature. After addition of 100 ml water and extraction with dichloromethane, the organic phase was dried over MgSO_{4} and the solvent partially removed in vacuo. The resulting solution was mixed with triethylamine $(8.80 \mathrm{ml}, 63.2 \mathrm{mmol})$ and $4-(N, N$-dimethylamino)pyridine ($39.0 \mathrm{mg}, 319 \mu \mathrm{~mol}$). At 273 K , toluene-4-sulfonyl chloride $(12.0 \mathrm{~g}, 63.2 \mathrm{mmol})$ was slowly added and the reaction mixture was stirred at 273 K for 15 min and another 16 h at ambient temperature. After aqueous work-up, the organic phase was dried over MgSO_{4} and the solvent removed in vacuo. Column chromatography (silica gel, hexane/acetone $=3: 1$) provided $3.50 \mathrm{~g}(38 \%)$ of (I). Single crystals were obtained by slow evaporation of a solution in ether at 293 K .

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=288.36$
Monoclinic, $P 2_{\downarrow} / c$
$a=15.926(4) \AA$
$b=8.345(4) \AA$
$c=10.955(3) \AA$
$\beta=9.50(4)^{\circ}$
$V=1436.0(8) \AA^{3}$
$Z=4$
$D_{x}=1.334 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 54
\quad reflections
$\theta=3-23^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=145(2) \mathrm{K}$
Block, colorless
$0.5 \times 0.4 \times 0.1 \mathrm{~mm}$

Data collection
Siemens SMART CCD diffractometer
ω scans
Absorption correction: numerical
(SHELXTL; Sheldrick, 1996)
$T_{\text {min }}=0.887, T_{\text {max }}=0.978$
23670 measured reflections
3749 independent reflections
2144 reflections with $I>2 \sigma(I)$

Figure 2
The crystal packing of (I), viewed down b.

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.03 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.117$
$S=1.04$
3749 reflections
183 parameters
H-atom parameters constrained
$+P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0049 (10)

Table 1
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {i }}$	0.95	2.45	3.210 (4)	137
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {ii }}$	0.95	2.37	3.240 (4)	152
C5-H5A $\cdots \mathrm{Cg}(\text { pyrrole })^{\text {iii }}$	0.99	2.61	3.395 (4)	136
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{C} \cdots \mathrm{Cg}\left(\right.$ phenyl) ${ }^{\text {iv }}$	0.98	2.78	3.754 (4)	173
N1-H01 $\cdots \mathrm{C}^{\text {v }}$	0.88	2.44	3.304 (4)	167

Symmetry codes: (i) $-x, y-\frac{1}{2}, \frac{3}{2}-z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $-x, 1-y, 2-z$; (iv) $1-x, y-\frac{1}{2}, \frac{5}{2}-z$; (v) $-x, \frac{1}{2}+y, \frac{3}{2}-z$.

The H atoms were taken from a difference Fourier synthesis. They were refined with fixed individual displacement parameters $[U(\mathrm{H})=$ $1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {non-methyl }}\right), U(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$ and $\left.U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})\right]$, using a riding model with fixed distances: $\mathrm{H}-\mathrm{N}=0.88 \AA, \mathrm{H}-$ $\mathrm{C}($ secondary $)=0.99 \AA, \mathrm{H}-\mathrm{C}($ aromatic $)=0.95 \AA, \mathrm{H}-\mathrm{C}($ methyl $)=$ $0.98 \AA$ and $\mathrm{H}-\mathrm{C}($ alkynyl $)=0.95 \AA$.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL (Sheldrick, 1996); software used to prepare material for publication: SHELXL97.

organic papers

References

Bennis, V. \& Gallagher, J. F. (1998). Acta Cryst. C54, 130-132.
Gallagher, J. F. \& Moriarty, E. (1999). Acta Cryst. C55, 1079-1082.
Goddard, R., Heinemann, O. \& Krüger, C. (1997). Acta Cryst. C53, 1846-1850.

Hashmi, A. S. K., Frost, T. M. \& Bats, J. W. (2000). J. Am. Chem. Soc. 122, 11553-11554.
Sheldrick, G. M. (1996). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

