organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jan W. Bats,^a* Jan P. Weyrauch^a and A. Stephen K. Hashmi^b

^aInstitut für Organische Chemie, Universität Frankfurt, Marie-Curie-Strasse 11, D-60439 Frankfurt am Main, Germany, and ^bInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Correspondence e-mail: bats@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 145 K Mean σ (C–C) = 0.003 Å R factor = 0.067 wR factor = 0.117 Data-to-parameter ratio = 20.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 4-Methyl-*N*-(prop-2-ynyl)-*N*-(1*H*-pyrrol-2-ylmethyl)benzenesulfonamide

The crystal packing in the title compound, $C_{15}H_{16}N_2O_2S$, consists of an $N-H\cdots\pi_{pyrrole}$, a $C-H\cdots\pi_{pyrrole}$, a $C-H\cdots\pi_{pyr$

Received 25 January 2002 Accepted 6 February 2002 Online 22 February 2002

Comment

The title compound, (I), was prepared in an effort to extend the gold-catalysed synthesis of highly substituted phenols with well defined substitution patterns, from furans as starting materials to the corresponding pyrroles which should provide anilines (for background information, see Hashmi *et al.*, 2000). The title molecule (Fig. 1) has two intramolecular contacts which approach the van der Waals contact distance: $H5A \cdots O1 2.43$ Å and $H6B \cdots O2 2.44$ Å. The pyrrole group is planar within experimental uncertainty. The phenyl group shows a small deviation from planarity: atoms S and C15 deviate by 0.061 (3) and 0.081 (4) Å, respectively, in the same direction from the phenyl plane. These deviations from planarity may result from crystal-packing effects.

The crystal packing shows five intermolecular interactions [Fig. 2 and Table 1: Cg(pyrrole) is the centroid of the pyrrole ring and Cg(phenyl) is the centroid of the phenyl ring]. The alkyne group acts as a donor of a $C-H \cdots O$ hydrogen bond with a rather short $H \cdots O$ distance of 2.37 Å. The C1-H1 bond also is involved in a $C-H \cdots O$ interaction, but with an H···O distance of 2.45 Å. The pyrrole groups form a herringbone pattern in the **b** direction. Neighboring pyrrole groups are connected by N-H··· π interactions. The N-H donors do not point to the centroid of the acceptor pyrrole ring, but point closely to atom C2 of the acceptor ring. The intermolecular H01···C2 distance of 2.44 Å is rather short. N–H··· $\pi_{pvrrole}$ interactions have also been reported by Bennis & Gallagher (1998) and Gallagher & Moriarty (1999). The crystal structure of pyrrole (Goddard et al., 1997) shows a herring-bone pattern of pyrrole groups connected by N-H··· π interactions, similar to the structure of (I). The angle between neighboring pyrrole groups is 70.1° in the crystal structure of pyrrole, while a

0290 Jan W. Bats et al. • C₁₅H₁₆N₂O₂S

© 2002 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1 The structure of (I) with 50% probability displacement ellipsoids.

similar value of 69.4 $(1)^{\circ}$ is observed in (I). Intermolecular C5-H5A··· $\pi_{pyrrole}$ interactions further stabilize the crystal structure. The C5-H5A bond points closer to the C2-C3 bond than to the centroid of the acceptor pyrrole group. Intermolecular C15-H15C··· π_{phenyl} interactions connect neighboring tosylate groups in the a direction.

Experimental

Propargylamine (2.20 ml, 32.1 mmol) was added to a solution of pyrrole-2-carboxaldehyde (3.07 g, 32.3 mmol) in dichloromethane containing MgSO₄ (10 g, 83 mmol). The reaction mixture was stirred for 20 h at ambient temperature, then the solvent was removed in vacuo to afford (prop-2-ynyl)(1H-pyrrol-2-ylmethylene)amine (4.17 g, 31.6 mmol) in 98% yield. This crude product was dissolved in dry methanol, sodium borohydride (1.43 g, 37.9 mmol) was added at 288 K and the reaction mixture was stirred for 1.5 h at room temperature. After addition of 100 ml water and extraction with dichloromethane, the organic phase was dried over MgSO₄ and the solvent partially removed in vacuo. The resulting solution was mixed with triethylamine (8.80 ml, 63.2 mmol) and 4-(N,N-dimethylamino)pyridine (39.0 mg, 319 µmol). At 273 K, toluene-4-sulfonyl chloride (12.0 g, 63.2 mmol) was slowly added and the reaction mixture was stirred at 273 K for 15 min and another 16 h at ambient temperature. After aqueous work-up, the organic phase was dried over MgSO₄ and the solvent removed in vacuo. Column chromatography (silica gel, hexane/acetone = 3:1) provided 3.50 g (38%) of (I). Single crystals were obtained by slow evaporation of a solution in ether at 293 K.

Crystal data

2	
$C_{15}H_{16}N_2O_2S$	$D_x = 1.334 \text{ Mg m}^{-3}$
$M_r = 288.36$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 54
a = 15.926 (4) Å	reflections
b = 8.345 (4) Å	$\theta = 3-23^{\circ}$
c = 10.955 (3) Å	$\mu = 0.23 \text{ mm}^{-1}$
$\beta = 99.50 \ (4)^{\circ}$	T = 145 (2) K
V = 1436.0 (8) Å ³	Block, colorless
Z = 4	$0.5\times0.4\times0.1$ mm
Data collection	
Siemens SMART CCD	$R_{\rm int} = 0.096$
diffractometer	$\theta_{\rm max} = 29.0^{\circ}$
ω scans	$h = -21 \rightarrow 21$
Absorption correction: numerical	$k = -11 \rightarrow 11$
(SHELXTL; Sheldrick, 1996)	$l = -14 \rightarrow 14$
$T_{\min} = 0.887, T_{\max} = 0.978$	135 standard reflections
23670 measured reflections	frequency: 600 min

intensity decay: none

Figure 2

The crystal packing of (I), viewed down b.

Refinement

Refinement on F^2	w = 1
$R[F^2 > 2\sigma(F^2)] = 0.067$	-
$wR(F^2) = 0.117$	wł
S = 1.04	$(\Delta \sigma)$
3749 reflections	$\Delta \rho_{\rm m}$
183 parameters	$\Delta \rho_{\rm m}$
H-atom parameters constrained	Extir

 $1/[\sigma^2(F_o^2) + (0.03P)^2$ + Phere $P = (F_o^2 + 2F_c^2)/3$ $(r)_{\rm max} < 0.001$ -3 $hax = 0.33 \text{ e} \text{ Å}^{-1}$ $_{\rm in} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ nction correction: SHELXL97 Extinction coefficient: 0.0049 (10)

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$C1-H1\cdots O1^{i}$	0.95	2.45	3.210 (4)	137
C8−H8···O2 ⁱⁱ	0.95	2.37	3.240 (4)	152
$C5-H5A\cdots Cg(pyrrole)^{iii}$	0.99	2.61	3.395 (4)	136
$C15-H15C\cdots Cg(phenyl)^{iv}$	0.98	2.78	3.754 (4)	173
$N1-H01\cdots C2^{v}$	0.88	2.44	3.304 (4)	167

Symmetry codes. (1) $-x, y - \frac{1}{2}, \frac{1}{2} - z$, $(y) - x, \frac{1}{2} + y, \frac{3}{2} - z$.

The H atoms were taken from a difference Fourier synthesis. They were refined with fixed individual displacement parameters [U(H) = $1.2U_{eq}(C_{non-methyl}), U(H) = 1.5U_{eq}(C_{methyl}) \text{ and } U(H) = 1.2U_{eq}(N)],$ using a riding model with fixed distances: H-N = 0.88 Å, H-C(secondary) = 0.99 Å, H-C(aromatic) = 0.95 Å, H-C(methyl) =0.98 Å and H-C(alkynyl) = 0.95 Å.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1996); software used to prepare material for publication: SHELXL97.

3749 independent reflections

2144 reflections with $I > 2\sigma(I)$

References

Bennis, V. & Gallagher, J. F. (1998). Acta Cryst. C54, 130–132.
Gallagher, J. F. & Moriarty, E. (1999). Acta Cryst. C55, 1079–1082.
Goddard, R., Heinemann, O. & Krüger, C. (1997). Acta Cryst. C53, 1846–1850.

Hashmi, A. S. K., Frost, T. M. & Bats, J. W. (2000). J. Am. Chem. Soc. 122, 11553–11554.

Sheldrick, G. M. (1996). *SHELXTL*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.